Biochemical characterization of Bacillus thuringiensis cytolytic toxins in association with a phospholipid bilayer.

نویسندگان

  • J Du
  • B H Knowles
  • J Li
  • D J Ellar
چکیده

The interaction of two Bacillus thuringiensis cytolytic toxins, CytA and CytB, with a phospholipid bilayer and their structure in the membrane-bound state were investigated by proteolysis using phospholipid vesicles as a model system. A toxin conformational change upon membrane binding was detected by comparing the proteolytic profile of membrane-bound toxin and saline-solubilized toxin. When membrane-bound toxin was exposed to protease K or trypsin, novel cleavage sites were found between the alpha-helical N-terminal half and beta-strand C-terminal half of the structure at K154 and N155 in CytA and at I150 and G141 in CytB. N-terminal sequencing of membrane-protected fragments showed that the C-terminal half of the toxin structure comprising mainly beta-strands was inserted into the membrane, whereas the N-terminal half comprising mainly alpha-helices was exposed on the outside of the liposomes and could be removed when liposomes with bound toxin were washed extensively after proteolysis. The C-termini of the membrane-inserted proteolytic fragments were also located by a combination of N-terminal sequencing and measurement of the molecular masses of the fragments by electrospray MS. Using a liposome glucose-release assay, the membrane-inserted structure was seen to retain its function as a membrane pore even after removal of exposed N-terminal segments by proteolysis. These data strongly suggest that the pores for glucose release are assembled from the three major beta-strands (beta-5, beta-6 and beta-7) in the C-terminal half of the toxin.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Bt Toxin Modification for Enhanced Efficacy

Insect-specific toxins derived from Bacillus thuringiensis (Bt) provide a valuable resource for pest suppression. Here we review the different strategies that have been employed to enhance toxicity against specific target species including those that have evolved resistance to Bt, or to modify the host range of Bt crystal (Cry) and cytolytic (Cyt) toxins. These strategies include toxin truncati...

متن کامل

Investigation of Cytocidal Activity of Bacillus Thuringiensis Parasporal Toxin on CCRF-CEM Cell Line

Background & Objective: Parasporin is a parasporal protein of Bacillus thuringiensis and exhibits special cytocidal activity against human cancer cells. Similar to other insecticidal Bacillus thuringiensis crystal toxins, parasporin shows target specificity and damages the cellular membrane. In this study, different strains of Bacillus thuringiensis isolated from various regions of Iran and the...

متن کامل

Structural characterization, membrane interaction, and specific assembly within phospholipid membranes of hydrophobic segments from Bacillus thuringiensis var. israelensis cytolytic toxin.

The Bacillus thuringiensis var. israelensis (Bti) cytolytic toxin is hypothesized to exert its toxic activity via pore formation in the cell membrane as a result of the aggregation of several monomers. To gain insight into the toxin's mode of action, 2 putative hydrophobic 22 amino acid peptides were synthesized and characterized spectroscopically and functionally. One peptide corresponded to t...

متن کامل

Single molecule fluorescence study of the Bacillus thuringiensis toxin Cry1Aa reveals tetramerization.

Pore-forming toxins constitute a class of potent virulence factors that attack their host membrane in a two- or three-step mechanism. After binding to the membrane, often aided by specific receptors, they form pores in the membrane. Pore formation either unfolds a cytolytic activity in itself or provides a pathway to introduce enzymes into the cells that act upon intracellular proteins. The elu...

متن کامل

Phosphatidylinositol-specific phospholipase C of Bacillus thuringiensis as a probe for the distribution of phosphatidylinositol in hepatocyte membranes.

Phosphatidylinositol-specific phospholipase C (PI-PLC) produced by Bacillus thuringiensis has been used as a probe for the distribution of phosphatidylinositol in hepatocyte membranes. Approx. 50% of this phospholipid was hydrolysed in microsomal vesicles (endoplasmic reticulum) with no significant hydrolysis of the remaining membrane phospholipids. Latency of mannose-6-phosphatase was retained...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • The Biochemical journal

دوره 338 ( Pt 1)  شماره 

صفحات  -

تاریخ انتشار 1999